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ABSTRACT 

Bipedal balancing is a complex subject as the process of balancing is difficult to define. As robot 

designs are becoming increasingly humanoid and human-robot interactions increasingly common, 

algorithms must be developed to replicate natural movement in non-ideal circumstances. This 

project implements such an algorithm on a robotic leg to attempt to balance on uneven surfaces 

and terrain. A pseudoinverse Jacobian was implemented to handle positional movement, and a 

linear quadratic regulator was used to shape smooth motion to desired balance points. They were 

then developed into an Arduino code which controls the motion of the robot in attempts at balance. 

Due to the limited stall torque of the chosen servos the robot could not achieve balance in practice. 

And although the position and control codes work well with the chosen microcontroller, the 

balance equations could be more versatile and accurate, so future work should focus on these 

aspects of the robot design process. 
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I. INTRODUCTION 

ITHIN the field of robotics there are many ways to 

incorporate movement. A popular technique is bipedal 

balancing as it mimics human movement. The ability to 

replicate human-like movement would allow robots to easily 

avoid obstacles, traverse terrain, and operate in areas heavily 

populated by humans. Not much is known about exactly how 

humans maintain bipedal balance [1], so replicating it in 

robotics is challenging. The ways that a robot can walk and 

maintain balance can be easily determined for ideal conditions 

using a periodic gait, but there is difficulty in understanding 

how to implement aperiodic gaits in non-ideal situations 

because of the difficulty in understanding what factors are 

necessary for stability [2]. 

Algorithms must be developed for balancing robots to 

be able to simulate the natural balance of humans. These 

algorithms should allow robots to maintain balance 

regardless of environment and external conditions. The 

algorithms must be able to maintain stability within human-

shaped robotics. The purpose of this project is to adapt 

general control and robotics principles to a wholly original 

robot design to explore techniques that may be applied to 

other non-standard robot designs in the future. 

II. THE CONSTRUCTION 

The first components considered in the design of the 

robotic leg were the servos. Due to familiarity and ease of 

use the servos chosen were the Dynamixel AX-12A Robot 

Actuators from Robotis. The servos also have many 

available frames and brackets which could be modified with 

CAD software to fit a customized robot design. These servos 

would make up the majority of moving parts, however there 

is also an L16-R linear servo attached at the robot’s foot, with 

the intent to provide additional foot movement as necessary. 

TABLE 1. 

Parts Price List 

Item Amount Each 

Dynamixel AX-12A Servos 4 $ 44.90 

Arbotix-M Robocontroller 1 $ 39.95 

FTDI USB Cable 1 $ 12.98 

MPU-6050 3 Axis Gyroscope 1 $ 6.77 

Actuonix L16-R Linear Servo 1 $ 70.00 

11.1V LiPo Battery Pack 1 $ 13.99 

DC 12V to 6V 3A Module 1 $ 6.40 

2 ft. PVC Pipe 1 $ 2.34 

3D Printing (Various Parts)  $ 199.73 

Total  $ 531.76 

 

Trying to keep costs as low as possible, PVC pipes were 

used as the links between joints. These links, 𝐿1 and 𝐿2, 

comprise of the length of the PVC pipe cut in half plus the 

distance from the end of the pipe to the axes of rotation of 

the two connected joint servos. The measurements for 𝐿1 and 

𝐿2 came out to 375.92 mm and 396.24 mm respectively. To 

connect the servos to these links, several brackets were 

designed using SolidWorks. These designs include the foot, 

heel, servo-pipe connectors, servo-servo connectors, and the 

circuit housing. The circuit housing was 3D printed from 

PLA plastic, while most other parts were printed from Nylon 

12 plastic for increased structural strength. 

 

 

FIGURE 1. 3D Rendering of the Robotic Leg – Multiple Angles. 

The robot is run using an Arbotix-M Robocontroller, 

which is specifically designed for use with Dynamixel 

servos. The Arbotix-M has a ATMEGA644p chip, allowing 

for the servos to be programmed using the Arduino IDE ver. 

1.6.13 with the use of an FTDI cable. Connected to the 

Arbotix-M is an MPU-6050 3 axis gyroscope/accelerometer. 

The Arbotix-M is powered by an 11.1 V 2200 mAh LiPo 

battery pack. As the dynamixel servos require 12V and the 

linear servo requires 6V, it was necessary to add a step-down 

module. Fortunately, the Arbotix-M has an input for an 

auxiliary power supply. This allowed all servos to be plugged 

into, and controlled from, the same microcontroller. Due to 

the use of PVC piping as the joint links, the wiring was able 

to be routed through the inside of the pipes which both 

protected the wires and resulted in a cleaner look. 

III. THE CURRENT POSITION 

To get the robot to balance, it is necessary to know its 

position in space. When the robot is not balanced it can move 

to a position of known balance via inverse kinematics 

equations. These positions are the Height position (distance 

from the floor), mediolateral position (side-to-side distance 

from center), and anteroposterior position (front-to-back 

distance from center). 

W 
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To know the position of the system’s balancing point the 

frames must be defined. These frame assignments can be 

seen in FIGURE 2. With the origin being at frame 0, coincident 

with frame 1, the balance of the system can be determined by 

the differences in position of frame 3. 

 

 

FIGURE 2. Frame Assignment for the Robotic Leg. 

To determine the actual position of frame 3, the Denavit-

Hartenberg parameters, seen in TABLE 2, are used to find the 

transformation matrices for each joint. By finding the 

matrices that define the transformation of the system from 

frame 0 to frame 3, the position of frame 3 can be expressed 

as a function of 𝜃1 and 𝜃2, as seen in (1). 

 

TABLE 2. 

Denavit-Hartenberg Parameters for the System. 

𝒊 𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊 𝜽𝒊 

𝟏 0 0 0 𝜃1 

𝟐 −90° L1 0 𝜃2 

𝟑 0 L2 0 𝜃3 

 

 [
Height

Mediolateral
 Anteroposterior 

] = [

cos 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

sin 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

−𝐿2 sin 𝜃2

] (1) 

 

With this the position of frame 3 in space can be 

determined based on angle feedback from the servos. The 

transformation matrices found here are also used in further 

calculations. 

IV. THE DESIRED ANGLES 

To determine the desired position for system balance it 

is important to know how it is the system balances. Due to 

the complexity of the problem this is no easy task. The 

approach to this solution was to find equations that describe 

the balance of the system as a function of the offset of frame 

3 in terms of 𝜃1 and 𝜃2 by experimentation. 

The first step was to find angles that allowed the system 

to balance on a flat surface. Locking the servos to these 

angles, data could be recorded that define the balance 

conditions. This data included servo angle position, balance 

point position, and gyroscope offsets for pitch and roll. After 

finding the mode average the data was recorded and the 

experiment repeated for a total of 10 trials. 

Mediolateral and anteroposterior data was similarly 

recorded, with a total of 20 angles, 5 in each direction. For 

mediolateral data, the servo at 𝜃1 was unlocked and 𝜃2 was 

locked at the vertical balance angle, allowing the robot to be 

moved into a position of balance. For anteroposterior data, 

𝜃2 was unlocked and 𝜃1 was locked at the vertical balance 

angle. In total, 210 separate trials were recorded. 

 

 

FIGURE 3. Mediolateral Position vs. Servo Angles. 

 

 

FIGURE 4. Anteroposterior Position vs. Servo Angles. 
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For each of the 21 positions of balance the mean average 

of the data was recorded. The functions for desired position 

were obtained by comparing the position values to the offsets 

of servo angles and finding best-fit lines. This was 

accomplished using MATLAB’s polyfit and polyval 

functions, which allow you to find a polynomial given a set 

of data. These functions also allow you to specify the order 

of the resulting equations. With the order set to 3rd, it was 

clear that the results were very linear, as seen in FIGURE 3 

and FIGURE 4, and so the order was set to 1st for simplicity 

and computation time. 

 

MLDesired
𝜃′ 2 = asin ( ) (2) 

−𝐿1

 

APDesired
 𝜃′

1 = asin (
𝐿1 + 𝐿2 cos 𝜃′) (3) 

2

 

The equations that result are the desired positions from 

both the mediolateral and anteroposterior perspectives. That 

is, no equation satisfies both the mediolateral and the 

anteroposterior balance conditions. To attempt to satisfy both 

perspectives, the mean average of the two are taken. This can 

be problematic if one or more perspectives are far from the 

balance point, but for small offsets it should be near enough 

to a point of balance. 

These equations allow for solutions to desired 

mediolateral and anteroposterior positions, but do not solve 

for a desired height position. To find this it is necessary to 

return to (1). Using the desired anteroposterior position to 

solve for a desired 𝜃2, seen in (2), then using the desired 𝜃2 

to solve the mediolateral position for a desired 𝜃1, seen in 

(3), and substituting these into the height position equation 

gives the desired height. 

 

 𝜃 = 𝐽−1
V 𝑉 (4) 

 

̇ ̇

Equipped with the desired position it is now possible to 

find the desired servo angles. Equation (4) shows how a 

change in angle relates to a change in position via an inverse 

Jacobian matrix. Using the transformation matrices from 

earlier, the Jacobian can be found. However, the Jacobian is 

non-invertible and so cannot be used. This problem is 

avoided by utilizing the pseudoinverse Jacobian (see 

Appendix A), found using the pinv MATLAB function. The 

resulting values for 𝜃̇ are then added to the current servo 

angles to reach the desired position. 

V. THE LQR CONTROLLER 

Dynamixel servos, such as those used in this project, are 

fast and accurate. However, their speed comes at the cost of 

a slight overshoot which may contribute to balance 

instability. To reduce the overshoot a controller needed to be 

implemented. A linear quadratic regulator (LQR) was chosen 

because it allows you to design a controller based on desired 

performance. 

 

FIGURE 5. Servo Positions vs. Degrees Comparison Chart. 

The first step of designing the LQR controller was 

identifying the system. A code was written to the 

microcontroller which set the servo to position 0. It then 

commanded the servo to move to position 512. As the servo 

moved to the new position it would output its current position 

as well as the current time every 10 milliseconds. Saving this 

data in a CSV file and importing it to MATLAB, the servo 

position data was then divided by 512. Plotting this against 

the time data resulted in a unit step response for the servo. 

 

FIGURE 6. Servo Unit Step and System Estimation Comparison. 

Using this data with MATLAB’s System Identification 

Toolbox, an estimated 5th order transfer function was 

generated which was 97.91% accurate to the original unit 
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step function (see Appendix A). A comparison between the 

original unit step function and the estimated unit step 

function can be found in FIGURE 6. Using MATLAB’s tf2ss 

function, the state space representation was calculated as 

seen in TABLE 3. 

 

TABLE 3. 

LQR Controller State Space Variables 

Variable Value 

𝑨 

[
 
 
 
 
−31.54 −952.9 −15010 −150900 −697100

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 ]

 
 
 
 

 

𝑩 [1 0 0 0 0]𝑇 

𝑪 [0 0 2828 −2665 694900] 

𝑫 0 

𝑳 

[
 
 
 
 

1.27 × 10−13

−1.03 × 10−15

−1.37 × 10−16

3.68 × 10−18

−4.09 × 10−19]
 
 
 
 

 

𝑸 

[
 
 
 
 
10     
 10    
  10   
   10  
    10]

 
 
 
 

 

𝑹 0.1 

𝑳𝑸𝑹𝑮𝑨𝑰𝑵 [4.6137 106.16 1185.9 5382.4 0.0001] 

 

 

FIGURE 7. Servo Unit Step and LQR Controlled Output Comparison. 

After checking the system for observability and 

controllability, an observer gain was calculated using 

uncontrolled system’s eigenvalues due to a lack of any 

desired characteristic equation. Choosing values for the LQR 

controller variables 𝑄 and 𝑅 began with setting 𝑅 = 1 and 𝑄 

equal to a 5-by-5 identity matrix. These numbers were then 

altered until the output curve satisfied the desired shape. The 

resultant curve has a lower overshoot at the cost of a slower 

settling time (FIGURE 7), which may be better for balancing. 

VI. THE ALGORITHM 

The algorithm closely follows the flow diagram in 

FIGURE 8. It begins by saving the values of the pitch and roll 

from the gyroscope at the balancing point. The current 

position is then derived from the current servo angles 

reported by the servos. Ideally, these are offset by the same 

values as the pitch and roll. 

 

FIGURE 8. Flow Diagram for the Balance Algorithm. 

The desired position is then calculated based on the pitch 

and roll readings. This desired position is then used to 

calculate 𝜃̇, the change in angle required to reach the new 

position. Desired angle is then calculated as the current angle 

plus the change in angle, minus the LQR gain, as seen in (5). 

 

 𝜃new = 𝜃current + 𝜃 − 𝐿𝑄𝑅Gain (5) ̇
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After the new angle is calculated, the corresponding 

servo is sent the command to move to this angle. After this, 

the LQR gain is calculated based on current servo angles. At 

this point the loop begins again. It should be noted, for each 

moving servo a separate version of these calculations is 

being handled concurrently. It should also be noted that on 

the first run of this algorithm the LQR gain is initialized to 0, 

and as such has no effect on the first new angle. LQR gain is 

calculated last specifically for iterative purposes, as the LQR 

gain of the current iteration is meant to be applied to the new 

angle of the next iteration as a means of system feedback. 

VII. RESULTS AND CONCLUSION 

The future of bipedal humanoid robotics depends on the 

ability of these robots to balance in non-ideal circumstances. 

To this end algorithms must be developed to achieve this. 

This project has demonstrated a way to handle position 

correction via pseudoinverse Jacobian. It has also 

demonstrated the effectiveness of an LQR controller for 

smoothing the transition between these positions to maintain 

balance. The algorithm itself works as intended and correctly 

attempts to correct the position of the robot, however the 

robot does not entirely work in practice due to a lack of 

foresight in choosing servos. Although the AX-12A servos 

are accurate and easy to use, this particular model has a 

relatively small stall torque. This causes the robot to fail in 

reaching the desired angle, often resulting in either lack of 

movement of wild over-correction. 

Another problem often encountered in this project was 

the inconsistency of the gyroscope readings. The code 

accounts for the cases where the gyroscope reports a single 

extreme error, but it can not account for the small errors or 

situations where the same position would give different 

results. Future work might include a new design with more 

power servos. It could also be beneficial to explore more 

sophisticated mathematical models for calculating points of 

balance as well as a more thorough statistical analysis for the 

distribution of points of balance in space. These could 

include a real-time calculation of the sum of force vectors, 

for example. 
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APPENDIX A – LARGE EQUATIONS 

 

Pseudoinverse Jacobian: 

 

𝐽𝑉
−1 =

[
 
 
 
 
 
 
 

− sin 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1

cos 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1
0

   
− cos 𝜃1 sin 𝜃2

𝐿2

−sin 𝜃1 sin 𝜃2

𝐿2

−cos 𝜃2

𝐿2   
− sin 𝜃1

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1

cos 𝜃1

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1
0

]
 
 
 
 
 
 
 

 

Estimated AX-12A Transfer Function: 

 

𝐺(𝑠) =
2828𝑠2 − 2665𝑠 + 6.949 × 105

𝑠5 + 31.54𝑠4 + 952.9𝑠3 + 1.501 × 104𝑠2 + 1.509 × 105 𝑠 + 6.971 × 105
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APPENDIX B – CIRCUIT SCHEMATIC 
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