
BALANCE OF A ROBOTIC LEG ON UNEVEN TERRAIN

A Project

Presented to the

Faculty of

California State Polytechnic University, Pomona

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

In

Electrical Engineering

By

A Micah McClain

2020

ii

SIGNATURE PAGE

PROJECT: BALANCE OF A ROBOTIC LEG ON UNEVEN TERRAIN

AUTHOR: A Micah McClain

DATE SUBMITTED: Spring 2020

Electrical and Computer Engineering Department

Dr. Salomon Oldak

Project Committee Chair

Dr. James Kang

Project Committee Member

Dr. Thomas Ketseoglou

Project Committee Member

iii

ABSTRACT

Bipedal balancing is a complex subject as the process of balancing is difficult to define. As robot

designs are becoming increasingly humanoid and human-robot interactions increasingly common,

algorithms must be developed to replicate natural movement in non-ideal circumstances. This

project implements such an algorithm on a robotic leg to attempt to balance on uneven surfaces

and terrain. A pseudoinverse Jacobian was implemented to handle positional movement, and a

linear quadratic regulator was used to shape smooth motion to desired balance points. They were

then developed into an Arduino code which controls the motion of the robot in attempts at balance.

Due to the limited stall torque of the chosen servos the robot could not achieve balance in practice.

And although the position and control codes work well with the chosen microcontroller, the

balance equations could be more versatile and accurate, so future work should focus on these

aspects of the robot design process.

iv

TABLE OF CONTENTS

SIGNATURE PAGE ... ii

ABSTRACT .. iii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

I. INTRODUCTION ... 1

II. THE CONSTRUCTION ... 1

III. THE CURRENT POSITION .. 1

IV. THE DESIRED ANGLES.. 2

V. THE LQR CONTROLLER .. 3

VI. THE ALGORITHM ... 4

VII. RESULTS AND CONCLUSION ... 5

REFERENCES .. 6

APPENDIX A – LARGE EQUATIONS ... 7

APPENDIX B – CIRCUIT SCHEMATIC ... 8

APPENDIX C – ARDUINO CODE .. 9

v

LIST OF TABLES

TABLE 1. Parts Price List ... 1

TABLE 2. Denavit-Hartenberg Parameters for the System. .. 2

TABLE 3. LQR Controller State Space Variables .. 4

vi

LIST OF FIGURES

FIGURE 1. 3D Rendering of the Robotic Leg – Multiple Angles. .. 1

FIGURE 2. Frame Assignment for the Robotic Leg. ... 2

FIGURE 3. Mediolateral Position vs. Servo Angles... 2

FIGURE 4. Anteroposterior Position vs. Servo Angles. .. 2

FIGURE 5. Servo Positions vs. Degrees Comparison Chart. .. 3

FIGURE 6. Servo Unit Step and System Estimation Comparison. .. 3

FIGURE 7. Servo Unit Step and LQR Controlled Output Comparison. .. 4

FIGURE 8. Flow Diagram for the Balance Algorithm. ... 4

1

I. INTRODUCTION

ITHIN the field of robotics there are many ways to

incorporate movement. A popular technique is bipedal

balancing as it mimics human movement. The ability to

replicate human-like movement would allow robots to easily

avoid obstacles, traverse terrain, and operate in areas heavily

populated by humans. Not much is known about exactly how

humans maintain bipedal balance [1], so replicating it in

robotics is challenging. The ways that a robot can walk and

maintain balance can be easily determined for ideal conditions

using a periodic gait, but there is difficulty in understanding

how to implement aperiodic gaits in non-ideal situations

because of the difficulty in understanding what factors are

necessary for stability [2].

Algorithms must be developed for balancing robots to

be able to simulate the natural balance of humans. These

algorithms should allow robots to maintain balance

regardless of environment and external conditions. The

algorithms must be able to maintain stability within human-

shaped robotics. The purpose of this project is to adapt

general control and robotics principles to a wholly original

robot design to explore techniques that may be applied to

other non-standard robot designs in the future.

II. THE CONSTRUCTION

The first components considered in the design of the

robotic leg were the servos. Due to familiarity and ease of

use the servos chosen were the Dynamixel AX-12A Robot

Actuators from Robotis. The servos also have many

available frames and brackets which could be modified with

CAD software to fit a customized robot design. These servos

would make up the majority of moving parts, however there

is also an L16-R linear servo attached at the robot’s foot, with

the intent to provide additional foot movement as necessary.

TABLE 1.

Parts Price List

Item Amount Each

Dynamixel AX-12A Servos 4 $ 44.90

Arbotix-M Robocontroller 1 $ 39.95

FTDI USB Cable 1 $ 12.98

MPU-6050 3 Axis Gyroscope 1 $ 6.77

Actuonix L16-R Linear Servo 1 $ 70.00

11.1V LiPo Battery Pack 1 $ 13.99

DC 12V to 6V 3A Module 1 $ 6.40

2 ft. PVC Pipe 1 $ 2.34

3D Printing (Various Parts) $ 199.73

Total $ 531.76

Trying to keep costs as low as possible, PVC pipes were

used as the links between joints. These links, 𝐿1 and 𝐿2,

comprise of the length of the PVC pipe cut in half plus the

distance from the end of the pipe to the axes of rotation of

the two connected joint servos. The measurements for 𝐿1 and

𝐿2 came out to 375.92 mm and 396.24 mm respectively. To

connect the servos to these links, several brackets were

designed using SolidWorks. These designs include the foot,

heel, servo-pipe connectors, servo-servo connectors, and the

circuit housing. The circuit housing was 3D printed from

PLA plastic, while most other parts were printed from Nylon

12 plastic for increased structural strength.

FIGURE 1. 3D Rendering of the Robotic Leg – Multiple Angles.

The robot is run using an Arbotix-M Robocontroller,

which is specifically designed for use with Dynamixel

servos. The Arbotix-M has a ATMEGA644p chip, allowing

for the servos to be programmed using the Arduino IDE ver.

1.6.13 with the use of an FTDI cable. Connected to the

Arbotix-M is an MPU-6050 3 axis gyroscope/accelerometer.

The Arbotix-M is powered by an 11.1 V 2200 mAh LiPo

battery pack. As the dynamixel servos require 12V and the

linear servo requires 6V, it was necessary to add a step-down

module. Fortunately, the Arbotix-M has an input for an

auxiliary power supply. This allowed all servos to be plugged

into, and controlled from, the same microcontroller. Due to

the use of PVC piping as the joint links, the wiring was able

to be routed through the inside of the pipes which both

protected the wires and resulted in a cleaner look.

III. THE CURRENT POSITION

To get the robot to balance, it is necessary to know its

position in space. When the robot is not balanced it can move

to a position of known balance via inverse kinematics

equations. These positions are the Height position (distance

from the floor), mediolateral position (side-to-side distance

from center), and anteroposterior position (front-to-back

distance from center).

W

2

To know the position of the system’s balancing point the

frames must be defined. These frame assignments can be

seen in FIGURE 2. With the origin being at frame 0, coincident

with frame 1, the balance of the system can be determined by

the differences in position of frame 3.

FIGURE 2. Frame Assignment for the Robotic Leg.

To determine the actual position of frame 3, the Denavit-

Hartenberg parameters, seen in TABLE 2, are used to find the

transformation matrices for each joint. By finding the

matrices that define the transformation of the system from

frame 0 to frame 3, the position of frame 3 can be expressed

as a function of 𝜃1 and 𝜃2, as seen in (1).

TABLE 2.

Denavit-Hartenberg Parameters for the System.

𝒊 𝜶𝒊−𝟏 𝒂𝒊−𝟏 𝒅𝒊 𝜽𝒊

𝟏 0 0 0 𝜃1

𝟐 −90° L1 0 𝜃2

𝟑 0 L2 0 𝜃3

 [
Height

Mediolateral
 Anteroposterior

] = [

cos 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

sin 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

−𝐿2 sin 𝜃2

] (1)

With this the position of frame 3 in space can be

determined based on angle feedback from the servos. The

transformation matrices found here are also used in further

calculations.

IV. THE DESIRED ANGLES

To determine the desired position for system balance it

is important to know how it is the system balances. Due to

the complexity of the problem this is no easy task. The

approach to this solution was to find equations that describe

the balance of the system as a function of the offset of frame

3 in terms of 𝜃1 and 𝜃2 by experimentation.

The first step was to find angles that allowed the system

to balance on a flat surface. Locking the servos to these

angles, data could be recorded that define the balance

conditions. This data included servo angle position, balance

point position, and gyroscope offsets for pitch and roll. After

finding the mode average the data was recorded and the

experiment repeated for a total of 10 trials.

Mediolateral and anteroposterior data was similarly

recorded, with a total of 20 angles, 5 in each direction. For

mediolateral data, the servo at 𝜃1 was unlocked and 𝜃2 was

locked at the vertical balance angle, allowing the robot to be

moved into a position of balance. For anteroposterior data,

𝜃2 was unlocked and 𝜃1 was locked at the vertical balance

angle. In total, 210 separate trials were recorded.

FIGURE 3. Mediolateral Position vs. Servo Angles.

FIGURE 4. Anteroposterior Position vs. Servo Angles.

3

For each of the 21 positions of balance the mean average

of the data was recorded. The functions for desired position

were obtained by comparing the position values to the offsets

of servo angles and finding best-fit lines. This was

accomplished using MATLAB’s polyfit and polyval

functions, which allow you to find a polynomial given a set

of data. These functions also allow you to specify the order

of the resulting equations. With the order set to 3rd, it was

clear that the results were very linear, as seen in FIGURE 3

and FIGURE 4, and so the order was set to 1st for simplicity

and computation time.

MLDesired
𝜃′ 2 = asin () (2)

−𝐿1

APDesired
 𝜃′

1 = asin (
𝐿1 + 𝐿2 cos 𝜃′) (3)

2

The equations that result are the desired positions from

both the mediolateral and anteroposterior perspectives. That

is, no equation satisfies both the mediolateral and the

anteroposterior balance conditions. To attempt to satisfy both

perspectives, the mean average of the two are taken. This can

be problematic if one or more perspectives are far from the

balance point, but for small offsets it should be near enough

to a point of balance.

These equations allow for solutions to desired

mediolateral and anteroposterior positions, but do not solve

for a desired height position. To find this it is necessary to

return to (1). Using the desired anteroposterior position to

solve for a desired 𝜃2, seen in (2), then using the desired 𝜃2

to solve the mediolateral position for a desired 𝜃1, seen in

(3), and substituting these into the height position equation

gives the desired height.

 𝜃 = 𝐽−1
V 𝑉 (4)

̇ ̇

Equipped with the desired position it is now possible to

find the desired servo angles. Equation (4) shows how a

change in angle relates to a change in position via an inverse

Jacobian matrix. Using the transformation matrices from

earlier, the Jacobian can be found. However, the Jacobian is

non-invertible and so cannot be used. This problem is

avoided by utilizing the pseudoinverse Jacobian (see

Appendix A), found using the pinv MATLAB function. The

resulting values for 𝜃̇ are then added to the current servo

angles to reach the desired position.

V. THE LQR CONTROLLER

Dynamixel servos, such as those used in this project, are

fast and accurate. However, their speed comes at the cost of

a slight overshoot which may contribute to balance

instability. To reduce the overshoot a controller needed to be

implemented. A linear quadratic regulator (LQR) was chosen

because it allows you to design a controller based on desired

performance.

FIGURE 5. Servo Positions vs. Degrees Comparison Chart.

The first step of designing the LQR controller was

identifying the system. A code was written to the

microcontroller which set the servo to position 0. It then

commanded the servo to move to position 512. As the servo

moved to the new position it would output its current position

as well as the current time every 10 milliseconds. Saving this

data in a CSV file and importing it to MATLAB, the servo

position data was then divided by 512. Plotting this against

the time data resulted in a unit step response for the servo.

FIGURE 6. Servo Unit Step and System Estimation Comparison.

Using this data with MATLAB’s System Identification

Toolbox, an estimated 5th order transfer function was

generated which was 97.91% accurate to the original unit

4

step function (see Appendix A). A comparison between the

original unit step function and the estimated unit step

function can be found in FIGURE 6. Using MATLAB’s tf2ss

function, the state space representation was calculated as

seen in TABLE 3.

TABLE 3.

LQR Controller State Space Variables

Variable Value

𝑨

[

−31.54 −952.9 −15010 −150900 −697100

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0]

𝑩 [1 0 0 0 0]𝑇

𝑪 [0 0 2828 −2665 694900]

𝑫 0

𝑳

[

1.27 × 10−13

−1.03 × 10−15

−1.37 × 10−16

3.68 × 10−18

−4.09 × 10−19]

𝑸

[

10
 10
 10
 10
 10]

𝑹 0.1

𝑳𝑸𝑹𝑮𝑨𝑰𝑵 [4.6137 106.16 1185.9 5382.4 0.0001]

FIGURE 7. Servo Unit Step and LQR Controlled Output Comparison.

After checking the system for observability and

controllability, an observer gain was calculated using

uncontrolled system’s eigenvalues due to a lack of any

desired characteristic equation. Choosing values for the LQR

controller variables 𝑄 and 𝑅 began with setting 𝑅 = 1 and 𝑄

equal to a 5-by-5 identity matrix. These numbers were then

altered until the output curve satisfied the desired shape. The

resultant curve has a lower overshoot at the cost of a slower

settling time (FIGURE 7), which may be better for balancing.

VI. THE ALGORITHM

The algorithm closely follows the flow diagram in

FIGURE 8. It begins by saving the values of the pitch and roll

from the gyroscope at the balancing point. The current

position is then derived from the current servo angles

reported by the servos. Ideally, these are offset by the same

values as the pitch and roll.

FIGURE 8. Flow Diagram for the Balance Algorithm.

The desired position is then calculated based on the pitch

and roll readings. This desired position is then used to

calculate 𝜃̇, the change in angle required to reach the new

position. Desired angle is then calculated as the current angle

plus the change in angle, minus the LQR gain, as seen in (5).

 𝜃new = 𝜃current + 𝜃 − 𝐿𝑄𝑅Gain (5) ̇

5

After the new angle is calculated, the corresponding

servo is sent the command to move to this angle. After this,

the LQR gain is calculated based on current servo angles. At

this point the loop begins again. It should be noted, for each

moving servo a separate version of these calculations is

being handled concurrently. It should also be noted that on

the first run of this algorithm the LQR gain is initialized to 0,

and as such has no effect on the first new angle. LQR gain is

calculated last specifically for iterative purposes, as the LQR

gain of the current iteration is meant to be applied to the new

angle of the next iteration as a means of system feedback.

VII. RESULTS AND CONCLUSION

The future of bipedal humanoid robotics depends on the

ability of these robots to balance in non-ideal circumstances.

To this end algorithms must be developed to achieve this.

This project has demonstrated a way to handle position

correction via pseudoinverse Jacobian. It has also

demonstrated the effectiveness of an LQR controller for

smoothing the transition between these positions to maintain

balance. The algorithm itself works as intended and correctly

attempts to correct the position of the robot, however the

robot does not entirely work in practice due to a lack of

foresight in choosing servos. Although the AX-12A servos

are accurate and easy to use, this particular model has a

relatively small stall torque. This causes the robot to fail in

reaching the desired angle, often resulting in either lack of

movement of wild over-correction.

Another problem often encountered in this project was

the inconsistency of the gyroscope readings. The code

accounts for the cases where the gyroscope reports a single

extreme error, but it can not account for the small errors or

situations where the same position would give different

results. Future work might include a new design with more

power servos. It could also be beneficial to explore more

sophisticated mathematical models for calculating points of

balance as well as a more thorough statistical analysis for the

distribution of points of balance in space. These could

include a real-time calculation of the sum of force vectors,

for example.

6

REFERENCES

[1] S. M. Bruijn and J. H. van Dieen, "Control of human gait

stability through foot placement," Journal of the Royal

Society Interface, vol. 15, no. 143, Jun 2018.

[2] J. W. Grizzle, C. Chevallereau, R. W. Sinnet and A. D.

Ames, "Models, feedback control, and open problems of

3D bipedal robotic walking," Automatica, vol. 50, no. 8,

pp. 1955-1988, Aug 2014.

7

APPENDIX A – LARGE EQUATIONS

Pseudoinverse Jacobian:

𝐽𝑉
−1 =

[

− sin 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1

cos 𝜃1 (𝐿1 + 𝐿2 cos 𝜃2)

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1
0

− cos 𝜃1 sin 𝜃2

𝐿2

−sin 𝜃1 sin 𝜃2

𝐿2

−cos 𝜃2

𝐿2
− sin 𝜃1

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1

cos 𝜃1

𝐿2
2 cos2 𝜃2 + 𝐿1

2 + 2𝐿1𝐿2 cos 𝜃2 + 1
0

]

Estimated AX-12A Transfer Function:

𝐺(𝑠) =
2828𝑠2 − 2665𝑠 + 6.949 × 105

𝑠5 + 31.54𝑠4 + 952.9𝑠3 + 1.501 × 104𝑠2 + 1.509 × 105 𝑠 + 6.971 × 105

8

APPENDIX B – CIRCUIT SCHEMATIC

	Balance Of A Robotic Leg On Uneven Terrain
	Signature Page
	Abstract
	Table of Contents
	List of Tables
	List of figures
	I. Introduction
	II. The Construction
	III. The Current Position
	IV. The Desired angles
	V. The LQR Controller
	VI. The Algorithm
	VII. Results and Conclusion
	References
	Appendix A – Large Equations
	Appendix B – Circuit Schematic

Accessibility Report

		Filename:

		McClainAMicah_Project2020.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 0

		Passed: 30

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

